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Contributions to Lattice 2014

Complex Langevin equation

Complex Langevin dynamics for SU(3) gauge theory in the presence of a theta term
Lorenzo Bongiovanni

Exploring the phase diagram of QCD with complex Langevin simulations
Benjamin Jäger

The onset of the baryonic density in HD-QCD at low temperature
Ion-Olimpiu Stamatescu

Effective Polyakov-line actions, and their solutions at finite chemical potential
Jeff Greensite

Lefschetz thimble

An algorithm for thimble regularization of lattice field theories
Francesco Di Renzo 

Solution of simple toy models via thimble regularization of lattice field theory
Giovanni Eruzzi



Non-zero chemical potential

Euclidean SU(3) gauge theory with fermions:

For  nonzero chemical potential, the fermion determinant is complex

Sign problem             Naïve Monte-Carlo
                                       breaks down

QCD sign problem

Z=∫DUexp(−SE [U ])det (M(U))

Importance sampling is possiblefor  det (M (U ))>0

det (M (U ,−μ ∗ ))=(det (M (U ) ,μ)) ∗



(Multi parameter) reweighting

Analytic continuation of results obtained at imaginary  

Taylor expansion in 

Canonical Ensemble, denstity of states, curvature of critical surface,
subsets, fugacity expansion, SU(2) QCD, G2 QCD, dual variables, worldlines, ….

Barbour et. al. '97; Fodor, Katz '02

Most methods going around the problem work only for  =B/3T

(μ /T )2

de Forcrand et al. (QCD-TARO) '99; Hart, Laine, Philipsen  '00; 
Allton et al. '05; Gavai and Gupta '08; de Forcrand, Philipsen '08,... 
 

Lombardo '00; de Forcrand, Philipsen  '02; D'Elia Sanfilippo '09; Cea et. al. '08-,... 

μ

Evading the QCD sign problem



Aarts '13
Aarts, Bongiovanni, Seiler, Sexty, Stamatescu, in prep. 

thimble and stochastic quantisation 

Recent revival:                     Aarts and Stamatescu '08 
Bose Gas, Spin model, etc.  Aarts '08, Aarts, James '10 Aarts, James '11 
Proof of convergence:          Aarts, Seiler, Stamatescu '11
QCD with heavy quarks:       Seiler, Sexty, Stamatescu '12
Full QCD with light quarks:   Sexty '14

Stochastic quantisation

Direct Methods: 
Use analiticity, expand integrals to the complex plane

Lefschetz thimble

Theory:                                  Witten '10 Cristoforetti et al. (Aurora) '12
Toy models, Bose gas, etc.:   Cristoforetti, Scorzato, Di Renzo '12
                                             Cristoforetti, Di Renzo, Mukherjee, Scorzato '13
                                             Mukherjee, Cristoforetti, Scorzato '13, 
                                             Cristoforetti et. al. '14
                                             Fujii, Honda, Kato, Kikukawa, Komatsu, Sano '13
Hubbard modell:                   Mukherjee, Cristoforetti '14
                                   



Stochastic process for  x:

d x
d

=−
∂S
∂ x

 

Gaussian noise

Averages are calculated along the trajectories:

⟨O ⟩=limT→∞

1
T
∫
0

T

O(x (τ))d τ=
∫e−S (x)O(x)dx

∫e−S(x)dx

for real action the
 Langevin method is convergent

Stochastic Quantization Parisi, Wu (1981)

⟨η(τ)⟩=0

Given an action S (x)

⟨η(τ)η(τ ' )⟩=δ(τ−τ ')

Fokker-Planck equation for the probability distribution of P(x):

∂P
∂

= ∂
∂ x


∂P
∂ x

P
∂ S
∂ x

=−HFPP Real action         positive eigenvalues



Langevin method with complex action

The field is complexified

real scalar            complex scalar

link variables: SU(N)              SL(N,C)
compact          non-compact

Klauder '83, Parisi '83, Hueffel, Rumpf '83,
Okano, Schuelke, Zeng '91, ...
applied to nonequilibrium: Berges, Stamatescu '05, ...

d x
d

=−
∂S
∂ x

 

Analytically continued observables

1
Z∫ P comp( x )O ( x )dx=

1
Z∫ P real ( x , y )O ( x+iy )dx dy

det (U )=1, U +≠ U−1

〈 x2〉real  →  〈 x2− y2〉complexified

“troubled past”:  Lack of theoretical understanding
                           Convergence to wrong results
                           Runaway trajectories



Proof of convergence

S=S W [U μ]+ln Det M (μ) measure has zeros
complex logarithm has a branch cut
                    meromorphic drift 
Is it a problem for QCD?

Non-holomorphic action for nonzero density

       
If there is fast decay 

and a holomorphic action

[Aarts, Seiler, Stamatescu (2009)
 Aarts, James, Seiler, Stamatescu (2011)]

[see also: Mollgaard, Splittorff (2013)]

then CLE converges to the correct result

P (x , y )→0  as y→∞

S (x)

Parallel 9A: Effective polyakov line actions with CLE
                   Jeff Greensite

(Det M=0)



Non-real action problems and CLE (besides nonzero density)

1. Real-time physics

2. Theta-Term

[Berges, Stamatescu (2005)]
[Berges, Borsanyi, Sexty, Stamatescu (2007)]
[Berges, Sexty (2008)]“Hardest” sign problem eiS M

Studies on Oscillator, pure gauge theory 

[Bongiovanni, Aarts, Seiler, Sexty, Stamatescu (2013)+in prep.]

S=F μν F μν
+iΘϵ

μ νθρ F μν F θρ

Parallel 4A: Complex Langevin dynamics for SU(3) gauge theory
                   in the presence of a theta term
                   Lorenzo Bongiovanni

comparing real 
     with imaginary  

Θ
Θ

Analyticity
    
      linear coeff. should agree



Lefschetz Thimble

Transform integral by shifting contour

∫−∞

∞

dx eS (x)F ( x)=∫C
dz eS ( z)F (z)=∫dt ( dzdt )eS( z (t ))F (z(t))

Better than the original contour if eRe(S ( z(t )))     peak + fast decay

ei Im(S ( z (t ))) milder sign problem than original

Im (S (z(t )))= const                    steepest descent of Re(S (z(t )))

Thanks to Cauchy-Riemann equations

starts from saddle points ∂z S( z0)=0

∂ z
∂ t

=±∂z S (z)
Lefschetz thimble is a contour which

z→ z0  for t→∞

+: stable thimble                  steepest descent
 -: unstable thimble               steepest ascent



∑k
mkT k→T 0

Intersection number (Morse theory)

Residual sign problem
from curvature of thimble
    Is it mild?
    Is it exponential in the volume?

[Fig: Scorzato]

For large systems: 

Z=∑k
mk e

−Im S ( zk)∫T k

dz eRe S ( z)=∑k
mk e

−Im S( zk)∫T k

dt
dz
dt

eRe Sk(t )

Choose thimble with the global minimum 
Regularisation of QFT
Resurgence 

Global sign problem
 Easy as long as few thimbles contribute 



Numerical Simulations on the Lefschetz Thimble

Algorithm needed to keep configurations on the thimble

(real) Langevin eq. on the thimble

HMC on the thimble
[Cristoforretti, Di Renzo, Scorzato (2012)]

[Fujii, Honda, Kato, Kikukawa, Komatsu, Sano (2013)]

ϕ4  theory with nonzero μ



Parallel 8F: An algorithm for thimble regularization
                  of lattice field theories
                  Francesco Di Renzo 

Parallel 4A: Solution of simple toy models via thimble 
                   regularization of lattice field theory 
                   Giovanni Eruzzi

“Ideal sampling” on the thimble

A number of algorithms tested to sample the thimble S=
1
2
σ x2+

1
4

x4

Reσ<0Reσ>0



Langevin and Lefschetz

Both use analiticity and complexifcation
  Direct simulation of complex actions is possible 

Complex Langevin Eq.

Allow complex drift in 
Langevin eq.

Complexify the field manifold
Dimensions are doubled

Check for convergence 

Lefschetz thimble

Shift integration contour into
  complex plane

Look for critical points, 
 Find contributing thimbles

Reweight the residual sign problem 

1
Z∫ P comp( x )O ( x )dx=

1
Z
∫T

Pcomp (z )O( z)dz

1
Z∫ Pcomp (x )O (x )dx=

1
Z
∫ P real( x , y )O (x+iy)dx dy



S [x ]=σ x2+i λ x

Gaussian Example

σ=1+i λ=20

d
d τ

(x+i y )=−2σ(x+iy)−iλ+η

CLE

P (x , y )=e−a(x−x0)
2
−b( y− y0)

2
−c (x−x0)( y− y0)

Gaussian distribution 
around critical point

∂ S (z)
∂ z ]

z0

=0

Measure 
on real axis

Thimble ż=−∂z S (z)
Straight lines
 starting from z0

Measure 
on thimble



Quartic model

Z=∫dx e−S(x )       

S (x)=σ
2

x2
+ λ

4
x4   with  σ∈ℂ

[Aarts (2013)]

CLE distributions follow thimble

Deeper connection?



Gauge theories and CLE

Unitarity norm: ∑i
Tr (U i U i

+ )
Distance from SU(N)

Tr (U U + )+Tr (U −1(U −1) + )≥2 N

∑ij
∣(U U +−1)ij∣

2

link variables: SU(N)              SL(N,C)
compact          non-compact

det (U )=1, U +≠ U−1

Gauge degrees of freedom also complexify

Infinite volume of irrelevant, unphysical configurations 

Process leaves the SU(N) manifold exponentially fast 
 already at μ≪1



Gauge cooling

complexified distribution with slow decay            convergence to wrong results

Minimize unitarity norm
∑i

Tr (U i U i
+ −1)

Using gauge transformations in SL(N,C)

U μ( x )→V (x )U μ( x )V −1( x+aμ) V ( x )=exp(i λa va( x))

va( x)is imaginary  (for real           , unitarity norm is not changed) 

Ga( x )=2 Tr [λa(U μ( x )U μ
+ ( x )−U μ

+ ( x−aμ)Uμ ( x−aμ))]

Gradient of the unitarity norm gives steepest descent

va( x)

Distance from SU(N)

Keep the system from trying to explore the 
    complexified gauge degrees of freedom

[Seiler, Sexty, Stamatescu (2012)]



U μ( x−aμ)→U μ( x−aμ)exp(αϵλa Ga( x ))

Gauge transformation at      changes 2d link variables 

U μ( x )→exp(−αϵλa Ga( x ))U μ( x )

Dynamical steps are interspersed with several gauge cooling steps

The strength of the cooling is determined by 
      cooling steps
      gauge cooling parameter 

x

α

Empirical observation:
   Cooling is effective for 

β>βmin
but remember,β→∞

in cont. limit



Heavy Quark QCD at nonzero chemical potential (HDQCD)

Det M (μ)=∏x
det (1+C P x)

2 det (1+C ' P x
−1)2

P x=∏τ
U 0( x+τa0) C=[2 κexp(μ)]N τ C '=[2κexp(−μ)]N τ

Hopping parameter expansion of the fermion determinant
Spatial hoppings are dropped

S=S W [U μ]+ln Det M (μ)

Studied with reweighting De Pietri, Feo, Seiler, Stamatescu '07

CLE study using gaugecooling

[Seiler, Sexty, Stamatescu (2012)]

R=e
∑

x
C Tr Px+C ' Tr P−1



average phase:

⟨exp(2 iϕ)⟩= ⟨Det M (μ)

Det M (−μ) ⟩

Reweigthing is impossible at 6≤μ/T≤12 , CLE works all the way to saturation

Fermion density:

n=
1

N τ

∂ ln Z
∂μ

det (1+C P )=1+C3+C Tr P+C 2 Tr P−1 Sign problem is absent at  
  small or large μ



Comparison to reweighting 

64  lattice , μ=0.85

Discrepancy of plaquettes at              
   a skirted distribution  develops  

β≤5.6

64  lattice , β=5.9



Large lattice: 
phase transition clearly visible

for β>βmin



Parallel 4A: Exploring the phase diagram of QCD 
                   with complex Langevin simulations
                   Benjamin Jäger

Phase diagram in HDQCD

Onset in fermionic density
    Silver blaze phenomenon

Polyakov loop
  Transition to deconfined state

β=5.8   κ=0.12  N f=2  N t=2. ..24



Poster: The onset of the baryonic density in HD-QCD 
            at low temperature
            Ion-Olimpiu Stamatescu

HDQCD κs=0     →    κs  expansion    →     full QCD

Systematic expansion in κs

Onset of the fermionic density
 At low temperatures

Convergence can be checked explicitly 

Cheaper alternative to full QCD
   At heavier quark masses

[Sexty, Stamatescu, et al. in prep.]



QCD with fermions Z=∫DU e−S G det M

K ax ν
F =

N F

4
Dax ν ln det M =

N F

4
Tr (M−1 M ' νa( x , y , z ))

Extension to full QCD with light quarks
[Sexty (2014)]

Additional drift term from determinant

Noisy estimator with one noise vector
 Main cost of the simulation: CG inversion

Unimproved staggered and Wilson fermions

Heavy quarks:  compare to HDQCD
Light quarks: compare to reweighting

Inversion cost highly dependent on chemical potential
Eigenvalues not bounded from below by the mass
     (similarly to isospin chemical potential theory)





Comparison of HDQCD in LO and full QCD

Similar behaviour at 
   intermediate masses

Quantative agreement at 
   high masses



Comparison with reweighting
   for full QCD 

[Fodor, Katz, Sexty (in prep.)]

R=Det M (μ=0)

Reweighting from ensemble at 



Sign problem

Sign problem gets hard around μ/T≈1−1.5

〈exp(2 iϕ)〉= 〈det M (μ)

det M (−μ) 〉



Conclusions

Recent progress for CLE simulations 
   Better theoretical understanding  (poles?)
   Gauge cooling
 

First results for full QCD with light quarks
   No sign or overlap problem 
   CLE works all the way into saturation region
   Comparison with reweighting for small chem. pot.
   Low temperatures are more demanding
   First results for the phase diagram

  

Direct simulations at nonzero density using complexified fields
     Complex Langevin Equations 
     Lefschetz thimble

Numerical simulations on the Lefschetz thimble are feasible
     Extension to gauge theories?
     



Backup slides



Spectrum of the Dirac Operator N F=4  staggered

Massless staggered operator at          is antihermitianμ=0



Spectrum of the Dirac Operator N F=4  staggered



Spectrum of the Dirac Operator

Large chemical potential, towards saturation

Fermions become “heavy”


